Heuristic algorithms

They prune the search space by:

1:using fast approximate methods to select the sequences of the database that are likely to be similar to the query and to locate the similarity region inside them.

2: restricting the alignment process:

- only to the selected sequences
- only to some portions of the sequences

FASTA \& BLAST story

1985 : FASTP (D. Lipman and W. Pearson) Global gapped alignments

1988 : FASTA (W. Pearson and D. Lipman)
Local gapped alignments

1990 : BLAST1
(S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman)

Local ungapped alignments
Gapped BLASTs :
1996: WU-BLAST2 (W. Gish)
1997: NCBI-BLAST2 (and PSI-BLAST)
(S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang,
W. Miller and D. Lipman)

FASTA ALGORITHM

Identify all k-tuple matches

Apply joining procedure

\longrightarrow Initn score

score the 10 best scoring regions using a scoring matrix
$>$ Init1 score

Apply limited DP
\longrightarrow Opt score

BLAST1 ALGORITHM

First step:

For each position p of the query, find the list or words of length w scoring more than T when paired with the word starting at p :

Second step:

For each words list, identify all exact matches with DB sequences:

BLAST1 ALGORITHM

Third step:
For each word match («hit»), extend ungapped alignment in both directions. Stop when S decreases by more than X from the highest value reached by S.

Reports all HSPs having score S above a threshold, or equivalently, having E-value below a threshold.

$$
\begin{aligned}
\text { E-value }= & \text { the number of HSPs having score S (or higher) } \\
& \text { expected to occur only by chance. }
\end{aligned}
$$

Apply sum-statistics to evaluate the significance of a combination of HSPs involving the same DB sequence.

NCBI-BLAST2

The «two-hits» requirement

First step: as with BLAST1, generate lists of words scoring more than T with words of the query.

Second step: generation of hits: identify all word matches in DB sequences

Third step: extension of hits: requires a second hit on the same diagonal at a distance of less than A.

This step generates ungapped HSPs

Fourth step: gapped extension of HSPs having score above a threshold $\mathbf{S}_{\mathbf{g}}$

WU-BLAST2

First step: as with BLAST1, generate lists of words scoring more than T with words of the query.

Second step: generation of hits: identify all words matches with the DB sequences

Third step: ungapped extension of hits :
. default's behavior: «one-hit» requirement (as BLAST1) . «hitdist» option: «two-hits» requirement (as ncbi-BLAST2)

Fourth step: HSPs with score S above a threshold trigger gapped extensions
«nogap» option: fourth step is not performed

Evaluates the statistical signifance of multiple local alignments using
«Sum statistics»

Ungapped and gapped extensions

Ungapped extension

Gapped extension by «banded DP»

Gapped extension by full DP

Gapped extension by «score-limited DP»

Statistics of alignments scores

Question: Was is the probability of chance occurence of an alignment having score S or greater?
\longrightarrow We need to know the random distribution of the scores, i.e. the distribution of alignment scores under a random model

Global alignments: the distribution is not known

Local alignments without gaps:
theoretical work: Karlin-Altschul statistics
\rightarrow Extreme-value distribution

Local alignments with gaps: empirical studies
\rightarrow Extreme-value distribution

Karlin-Altschul statistics

\longrightarrow Apply to local ungapped alignments

Random Model:

- Random sequences:

Independent and identically distributed residues, taken with background probabilities p_{i}, p_{j}.

- Random variable:

S, score of the MSP (Maximal Segment Pair)

- Scoring system:

A set of similarity scores, $S_{i, j}$, such as:

- at least one of the scores $S_{i, j}$ is strictly positive
- the expected score for a random pair of residues has to be negative:

$$
\sum_{i, j} p_{i} p_{j} S_{i, j} \leq 0
$$

Under this random model and given that the lengths of the two sequences being compared are large, S follows an Extreme-Value distribution.

The Extreme Value Distribution

(from W. Gish, 1996)
searching /local/databases/fasta/sptrnrdb library

Karlin-Altschul statistics

p-value: probability that there is at least one random MSP having score \mathbf{S} or greater.

$$
p(s c o r e \geq S)=1-\exp \left(-K m n e^{-\lambda S}\right)
$$

E-value: expected number of random MSP having score S or greater.

$$
E(S)=K m n e^{-\lambda S}
$$

Analytical formulas are available, enabling to calculate λ and K from the parameters of the random model (i.e. background probabilities, similarity scores, lengths of the sequences)

Normalized scores: $S^{\prime}=\lambda S-\ln K$

Bit scores: $\quad S^{\prime}=\frac{\lambda S-\ln K}{\ln 2} \quad E\left(S^{\prime}\right)=m n 2^{-S^{\prime}}$

Statistics of local gapped alignments

Empirically shown that they follow an extreme-value distribution.

Need of empirical simulations of the random distribution in order to calculate its parameters.

Blast2 (both of them):
artificial random sequences

Fasta:
uses results from the search: real unrelated sequences

